2025年6月20日 星期五
馮睎乾十三維度解讀「Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task」,探討使用AI工具寫作對人腦的影響,結論談不上新奇,但至少提醒大家「腦袋是個好東西」。ChatGPT讓他以為自己是Neo.
2025年6月18日 星期三
AI 人才爭奪戰再起;OpenAI. Meta 每月 AI 用戶數突破 10 億,著眼於訂閱服務的未來
根據報道,Meta Platforms 曾開出 1 億美元的薪酬方案,以吸引 OpenAI 的頂尖人才,但執行長 Sam Altman 表示,公司最優秀的人才之所以選擇留任,是因為他們更相信實現通用人工智慧 (AGI)。
Altman 在周二與其兄弟 Jack Altman 共同發布的播客中證實了最近的報道,即 Meta 試圖從其公司和 Alphabet 旗下的谷歌 DeepMind 招募研究人員,作為其 AI 人才招聘的一部分。
Altman 表示,這些報價包含九位數的薪水。
另請參閱:Meta 每月 AI 用戶數突破 10 億,著眼於訂閱服務的未來
「他們 [Meta] 開始向我們團隊中的許多人開出巨額報價,」Altman 說。 “例如每年 1 億美元的簽約獎金,比這 [薪酬] 還要多。”
「我很高興,至少到目前為止,我們最優秀的員工都沒有決定接受這個條件,」這位 OpenAI 執行長補充道。
他接著表示,OpenAI 的員工認為該公司在實現通用人工智慧 (AGI) 方面更有希望,而 Meta 的做法——注重薪酬而非使命——不會促進成功所必需的創新。
「我們的設定是,如果我們成功了,我們研究團隊中的許多人相信我們會成功,或者我們有很大機會成功,那麼每個人都會獲得豐厚的回報,」Altman 說。
儘管 Meta 提供數百萬美元的薪水,但據報道,其 AI 部門正面臨人才流失,越來越多的員工轉投 OpenAI 和 Anthropic 等競爭對手。
根據 SignalFire 的《2025 年人才狀況報告》,對 AI 人才的需求正在激增,企業難以留住熟練員工。 Anthropic 以業界領先的 80% 的留任率脫穎而出,DeepMind 留住了 78% 的員工,而 OpenAI 和 Meta 則分別以 67% 和 64% 的留任率落後。
上週,Meta 宣布對 Scale AI 進行了戰略性少數股權投資,使其估值超過 290 億美元。作為合作的一部分,Scale AI 創辦人 Alexandr Wang 將加入 Meta,支持其 AI 業務,同時繼續擔任 Scale 董事會成員。
2025年6月4日 星期三
或許6月15可作篇悼念 西蒙學習法? Designing Organizations for an Information-Rich World 1971 經濟學家對美國通脹數據的質量提出質疑2025
如果你能在六個月內專注做一件事,不受打擾,
----
Designing Organizations for an Information-Rich World 1971 經濟學家對美國通脹數據的質量提出質疑2025
美國勞工統計局表示,人員短缺影響了其進行大規模月度調查的能力。一些經濟學家開始質疑近期美國通脹數據的準確性。
Designing Organizations for an Information-Rich World
Gwern.net
https://gwern.net › doc › design › 1971-simon
Simon has put before us the problem of attention overload. The popu- lation of the world doubles every thirty-five to forty years. Since most of these people ...
2025年5月21日 星期三
Herbert A. Simon coined the term satisficing, which denotes a situation in which people seek solutions, or accept choices or judgements, that are "good enough" for their purposes although they could be optimised.
A heuristic[1] or heuristic technique (problem solving, mental shortcut, rule of thumb)[2][3][4][5] is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless "good enough" as an approximation or attribute substitution.[6][7] Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution.[8][9] Heuristics can be mental shortcuts that ease the cognitive load of making a decision.[10][11][12]
heu・ris・tic













━━ n. 【コンピュータ】ヒューリスティック, 発見的方法.






adj.
- Of or relating to a usually speculative formulation serving as a guide in the investigation or solution of a problem: “The historian discovers the past by the judicious use of such a heuristic device as the ‘ideal type’” (Karl J. Weintraub).
- Of or constituting an educational method in which learning takes place through discoveries that result from investigations made by the student.
- Computer Science. Relating to or using a problem-solving technique in which the most appropriate solution of several found by alternative methods is selected at successive stages of a program for use in the next step of the program.
n.
- A heuristic method or process.
- heuristics (used with a sing. verb) The study and application of heuristic methods and processes.
A heuristic[1] or heuristic technique (problem solving, mental shortcut, rule of thumb)[2][3][4][5] is any approach to problem solving that employs a pragmatic method that is not fully optimized, perfected, or rationalized, but is nevertheless "good enough" as an approximation or attribute substitution.[6][7] Where finding an optimal solution is impossible or impractical, heuristic methods can be used to speed up the process of finding a satisfactory solution.[8][9] Heuristics can be mental shortcuts that ease the cognitive load of making a decision.[10][11][12]
Heuristic reasoning is often based on induction, or on analogy ... Induction is the process of discovering general laws ... Induction tries to find regularity and coherence ... Its most conspicuous instruments are generalization, specialization, analogy. [...] Heuristic discusses human behavior in the face of problems [... that have been] preserved in the wisdom of proverbs.[13]
Context
Contemporary
[edit]
The study of heuristics in human decision-making was developed in the 1970s and the 1980s, by the psychologists Amos Tversky and Daniel Kahneman,[81] although the concept had been originally introduced by the Nobel laureate Herbert A. Simon. Simon's original primary object of research was problem solving that showed that we operate within what he calls bounded rationality. He coined the term satisficing, which denotes a situation in which people seek solutions, or accept choices or judgements, that are "good enough" for their purposes although they could be optimised.[82]
Rudolf Groner analysed the history of heuristics from its roots in ancient Greece up to contemporary work in cognitive psychology and artificial intelligence,[83] proposing a cognitive style "heuristic versus algorithmic thinking", which can be assessed by means of a validated questionnaire.[84]