Herbert A. Simon 司馬賀

2017年12月21日 星期四

"behavioral economics"

請用"behavioral economics"搜索此blog,可得十來篇相關的導引。



今年2017流行說,今年的諾貝爾經濟學獎得主是"行為經濟學之父"。此文或許可說明,1978年諾貝爾經濟學獎得主 Simon 也是此領域的高手。
Herbert A. Simon - Wikipedia
https://en.wikipedia.org/wiki/Herbert_A._Simon


the 1987 edition of The New Palgrave, edited by Eatwell, Milgate & Newman.
Herbert A Simon寫了幾條:
Behaviour Economics 週五早讀此篇,此辭典是為專業經濟學學生寫的,所以要如何深入淺出,是挑戰。
Bounded Rationality
Causality in Economic Model
Evans, Griffith Conrad, 1887-1973
Satisficing

4 年前
查看你的動態回顧chevron-right
Hanching Chung
2013年12月21日 · 
odel
Evans, Griffith Conrad, 1887-1973
Satisficing
Herbert A. Simon 司馬賀: The New Palgrave Dictionary of Economics, Second Edition, 2008
HCHAS.BLOGSPOT.COM





行為經濟學有許多"門派"
Simon的當然算一主流 所以有諾貝爾經濟學獎之後輩




March 2010
6 x 9, 296 pp., 69 illus.
$16.00/£11.95 (PAPER)
Short

ISBN-10:
0-262-51416-8
ISBN-13:
978-0-262-51416-3
Other Editions
Cloth (2007)
Series
CESifo Seminar Series
Related Links
Find this book in a library
Preview or Purchase the E-Book Version of This Title

Economics and Psychology

Click
MIT Press e-Books
Economics and Psychology
A Promising New Cross-Disciplinary Field
Edited by Bruno S. Frey and Alois Stutzer

Table of Contents and Sample Chapters

The integration of economics and psychology has created a vibrant and fruitful emerging field of study. The essays in Economics and Psychology take a broad view of the interface between these two disciplines, going beyond the usual focus on "behavioral economics." As documented in this volume, the influence of psychology on economics has been responsible for a view of human behavior that calls into question the assumption of complete rationality (and raises the possibility of altruistic acts), the acceptance of experiments as a valid method of economic research, and the idea that utility or well-being can be measured.

The contributors, all leading researchers in the field, offer state-of-the-art discussions of such topics as pro-social behavior and the role of conditional cooperation and trust, happiness research as an empirical tool, the potential of neuroeconomics as a way to deepen understanding of individual decision making, and procedural utility as a concept that captures the well-being people derive directly from the processes and conditions leading to outcomes. Taken together, the essays in Economics and Psychology offer an assessment of where this new interdisciplinary field stands and what directions are most promising for future research, providing a useful guide for economists, psychologists, and social scientists.

CESifo Seminar Series

About the Editors

Bruno S. Frey is Professor of Economics at the University of Zurich.

Alois Stutzer is Assistant Professor in the Faculty of Business and Economics at the University of Basel.


Reviews
"The contributions show the fruitful integration of psychological methods and insights in economic research and impressively demonstrate how much progress was already made."
—Bettina Rockenbach, Journal of Economics and Statistics
張貼者: 人事物 於 凌晨3:00 沒有留言:

2017年12月15日 星期五

Alpha Zero’s “Alien” Chess Shows the Power, and the Peculiarity, of AI

MIT Technology Review
The latest AI program developed by DeepMind is not only brilliant and remarkably flexible—it’s also quite weird.
Alpha Zero’s “Alien” Chess Shows the Power, and the Peculiarity, of AI
The latest advance from DeepMind behaves in a very surprising way.…
TECHNOLOGYREVIEW.COM

張貼者: 人事物 於 凌晨12:26 沒有留言:

2017年11月28日 星期二

Yann LeCun


Yann LeCun - Wikipedia
https://en.wikipedia.org/wiki/Yann_LeCun




Yann LeCun is a computer scientist with contributions in machine learning, computer vision, mobile robotics and computational neuroscience. He is well known for his work on optical character recognition and computer vision using ...


  1. The Future of AI Research - foundational-research.org‎

    広告www.foundational-research.org/AI‎
    AI Will Change the World. Learn More Here!
    Papers · Essays · Discussions
    • Get involved
    • Donate
    • About us
    • Read our essays

検索結果

Yann LeCun | AI and the Future of Work

futureofwork.mit.edu/Speaker_Yann_LeCun
Yann LeCun is Director of AI Research at Facebook, and Silver Professor of Dara Science, Computer Science, Neural Science, and Electrical Engineering at New York University, affiliated with the NYU Center for Data Science, the Courant ...

[PDF]AI and the Future of Work Meeting, MIT Nov 1 2017 ... - Daniela Rus

danielarus.csail.mit.edu/.../2017-11-01-AI-FOW-OpeningRemarksR...
2017/11/01 - us, including today's keynote speakers, Yann LeCun of NYU and Facebook, and Eric Schmidt from Alphabet. Over the next two days, this symposium will cover a broad range of topics related to the future of work, from.



李開復 Kai-Fu Lee

AI泰斗Yann LeCun:8000年前的人類經驗和情感,比頂級AI更值錢

“今天你可以去亞馬遜買一個藍光播放機,它包含一個非常複雜的內置機器人,價格只有47美元。

如果你想購買一個手工製作的陶瓷球,這項技術可能是八千年前的,但這會花費你750美元,因為這其中包含真實的人類創作和人類經驗。”


在11月初的MIT“AI and Future of Work”峰會上,深度學習三大牛之一的Yann LeCun分享了他對人工智慧的最新思考。

他在演講中說,人工智慧將會改變人類看待事物的價值。機器越發達,人們就越不重視機器人創造的物質產品,創意和藝術產業將會有一個光明的未來。

“比如音樂,你可以花7美元左右下載莫札特的歌劇,但如果你想看魔笛表演,可能要花200、400或者800塊,因為他們可以真實地產生人際交往,創造情感溝通。”

在業界,Yann LeCun有個樸實而厲害的稱號:深度學習三大牛之一。他是紐約大學終身教授,也是紮克伯格親任的Facebook人工智慧實驗室負責人。

Yann LeCun的主要成就是對卷積神經網路的深度研究。該技術在上世紀80年代並不被看好,一直到90年代才有所好轉,但LeCun一直堅持了下來。正如深度學習運動核心人物Geoffrey Hinton所說,“是LeCun高舉著火炬,沖過了最黑暗的時代。”
張貼者: 人事物 於 清晨5:35 沒有留言:

2017年11月22日 星期三

清水亮:日本AI的現狀與「Deep Learning」的課題

這篇落後點了,

  • 清水亮  SHIMIZU Ryō
  • [ 署名文章篇數: 1 最新更新日: 2017.06.28 ]
UEI公司總裁兼CEO。兼任DWANGO會長室第3課長。專門致力於以Deep Learning為主的AI研究開發。1976年生。電氣通信大學在讀時,曾參與美國Microsoft的次世代遊戲OS的開發。1998年進入DWANGO工作。曾任 DWANGO North America Inc. 副總裁,2003年成立UEI。著有《AI入門》(KADOKAWA, 2016年)等。




日本AI的現狀與「Deep Learning」的課題
清水亮 [作者簡介]
  • 科技
[2017.06.28]

......

「機器學習」與「神經網路」

AI學會誕生的1986年,正好處於第2次AI潮的全盛期,這時討論的AI概念,為方便行文,筆者暫且稱之為「第2代AI」。圖靈時代提倡的AI(姑且稱之為「第1代AI」)是模仿神經回路的「神經網路」(神經元之間的所有相互連接)的設想,當然它的外延更廣泛一些。然而第2代AI,則是符號處理和知識資訊處理成為了主流。日本便是從這個時候開始投入大量的預算,致力於開發AI,在此之後,包括日本在內,全球的AI概念已經偏向於符號處理和知識資訊技術處理了。即使到現在,全球9成以上的AI研究人員都屬於這種第2代AI的研究者。第2代AI的研究碩果累累,給全球技術的進步做出了巨大貢獻。例如World Wide Web就是第2代AI研究成果的應用結果,Google之類的搜尋引擎也是如此。
然而進入21世紀,電腦的計算能力實現飛躍式提升之後,長久以來被忽略的「機器學習」領域也很快地呈現出了活力。機器學習是一種演算法,它可以讓電腦對特定事件的資料進行解析,從其結果中學習它的傾向,並用於以後的判斷和預測。雖然這種方法早就存在,但隨著電腦計算能力的不斷提高,實用性的機器學習才逐步得以實現。此外,隨著計算能力的提高,通過大量資料讓以往學習能力弱的多層神經網路進行機器學習也成為了可能。這就是Deep Learning。

日本國內沒有研究「Deep Learning」的人才

整個90年代,機器學習都處於弱勢地位,所以機器學習的研究者也寥寥無幾。Deep Learning的研究者更是少之又少。為數不多的Deep Learning高手紛紛被美國Google、Facebook、Microsoft和中國百度等企業研究所招攬至麾下。
因此如今對Deep Learning有著長期研究基礎的專家實屬鳳毛麟角。這點在日本也不例外。更糟糕的是目前日本大學和研究機構可以說幾乎沒有做Deep Learning研究的專家。
當然,受最近幾年AI潮的影響,各大學和研究機構都迅速做出反應,開始致力於Deep Learning研究人員的培養。可惜現實卻是無論在哪所大學,位高權重的教授大都是第2代AI的研究者,他們對Deep Learning(筆者稱之為「第3代AI」)的研究能力跟初學者相差無幾。機器學習的專家與Deep Learning的專家之間還有些微妙的見解分歧,這也給這種混亂局勢雪上加霜。
舉個例子,大家就能知道長久以來日本學界有多麼輕視或蔑視Deep Learning。
2016年6月,筆者應經濟產業省的邀請,在AI學會的全國大會上,就Deep Learning的分科會議做了兩個企劃。然而在實際給分科會議取名時,同席的學術圈研究者提出了異議。他說:「如果名字裏加上Deep Learning的話,估計就沒人來聽了吧。」
這種論調聽著似乎有些荒唐,但這確實就是僅僅1年前的學界對Deep Learning的認識。就在日本研究者裹足不前之際,歐美和中國早已奪取先機,不斷有成果發表問世。
Google「神經網路翻譯」的衝擊
去年的AI學會全國大會上,從人數來看,參加了名字含有Deep Learning或機器學習的分科會議的人,確實只占全體人員的10%多一點。然而對AI研究者來說,去年秋天卻發生了重大事件。那就是Google「神經網路翻譯」的問世。
神經網路翻譯不使用以往任何一種自然語言處理式的手法,而是僅對對譯的對應關係進行學習,是一種依靠神經網路學習的翻譯方法。這種看似簡單粗暴的翻譯方法,卻有著高人一頭的準確度,讓研究者們大跌眼鏡。
尤其是在日本,自然語言處理和機器翻譯的研究占據主流。第2代AI研究者對於智慧的定義是「能夠對概念進行邏輯地理解和再構築」,一直寄望於靠邏輯來解決問題。自然語言處理是通過處理自然語言,來逐步逼近人類智慧的一種方法,這當然也算是一種非常有意義的研究。
然而Google的神經網路翻譯完全放棄了這種自然語言處理的方法,而是讓機器作為一個完全的黑匣子來學習語言。如果這種方法生成的譯文準確度更高的話,那麼長久以來致力於處理自然語言的研究者們就失去了存在的意義。

顛覆圍棋AI常識的「AlphaGo」

圍棋界也發生了一件與神經網路翻譯一樣的大事件。正如開篇提到的,2016年3月,DeepMind公司開發的「AlphaGo」成功擊敗了職業9段棋士。而這個會下圍棋的AI也是用完全不同於以往的方法進行開發的。
「AlphaGo」具有判斷局勢的Value-Network和判斷套路的Policy-Network的雙層深層神經網路。然後就是不斷讓它學習過去的棋譜,與自己對戰,以此磨練棋藝。這種方法叫做深度強化學習,是現在的主流方法之一。
在此之前的圍棋AI是通過程式設計寫入圍棋規則和定式,在很大程度上需要依賴人腦思考,下達指令,才能下棋。圍棋AI的程式師會研究人類棋士如何打敗對手,並結合單純的機器學習來創造一個圍棋AI高手,然而這種嘗試並沒有誕生出能夠與職業棋士分庭抗禮的AI。
籍籍無名的DeepMind橫空出世,用AI打敗了人類棋士。受此刺激,DWANGO、百度等日本和中國的科技巨頭以及業餘程式師都紛紛投身AI圍棋大賽。另一方面,電氣通信大學從2007年起一直每年舉辦的「UEC杯世界電腦圍棋賽」,受「AlphaGo」戰績的影響,於2017年3月在第10屆大賽上宣布停辦。
DeepMind此後也不斷開發和發表新技術,一直引領著世界技術發展。日本國內Yahoo、DWANGO或Preferred Networks等新興勢力也開始投入到Deep Learning的研究中,此外以豐田、FANUC為首的巨頭企業也不斷加大投資力度,可惜至今還沒有什麼值得一提的成果問世。
(2017年3月20日)
標題圖片:2016年3月,美國Google旗下的DeepMind公司開發的「AlphaGo」以4勝1負的成績戰勝了韓國棋手李世石(AP/Aflo)


張貼者: 人事物 於 凌晨4:15 沒有留言:

2017年11月8日 星期三

The Past, Present and Future of Artificial Intelligence?




此累積式學習之外插預測法,足以服人嗎?


Scientific American
"This is more than just another industrial revolution. This is something new that transcends humankind and even biology." #FallingWalls17
Falling Walls: The Past, Present and Future of Artificial Intelligence
This is more than just another industrial revolution—it is something that…
BLOGS.SCIENTIFICAMERICAN.COM

張貼者: 人事物 於 上午9:12 沒有留言:

2017年10月11日 星期三

The Rise of Behavioral Economics and Its Influence on Organizations


“behavioural economics” ; Herbert A. Simon (司馬賀) ...

Harvard Business Review
Back in the 1990s, Thaler began writing about anomalies in people’s behavior that could not be explained by standard economic theory.
The Rise of Behavioral Economics and Its Influence on Organizations
Nobel winner Richard Thaler changed how we think about human behavior.
HBR.ORG

張貼者: 人事物 於 下午3:50 沒有留言:

2017年10月9日 星期一

Richard Thaler wins Nobel Prize 'for his contributions to behavioural economics'

【即時頭條】芝加哥大學的泰勒獲諾貝爾經濟學獎
行為經濟學與金融學創辦人之一、美國芝加哥大學的泰勒(Richard H. Thaler)獲得了2017年諾貝爾經濟學獎,因他揭示了人類缺乏理性和自控力等弱點如何最終對市場產生影響。
泰勒現年72歲,曾合著2008年暢銷書《助推》(Nudge)。瑞典皇家科學院週一表示,泰勒「在個人決策的經濟和心理分析之間築起了一座橋樑」。
「通過探索有限理性、社會偏好和缺乏自控力的後果,他展現了這些人類特質如何系統性地影響個人決策和市場結果,」瑞典皇家科學院稱。
他與原美國白宮顧問Cass Sunstein一同構建的「助推」理論顯示,小的激勵措施可使人做出特定的決策。在財政赤字限制決策者支出空間的時代,他的研究為政客們尋找方法影響選民、塑造社會提供了信息。美國前總統奧巴馬和英國前首相卡梅倫均曾指派團隊,研究是否可用行為經濟學來節約政府開支。
泰勒出生於美國新澤西州,1967年獲得凱斯西儲大學學士學位,1970年和1974年先後獲得羅切斯特大學碩士和博士學位。1995年,他加入了芝加哥大學布斯商學院。(彭博社)
紐約時報:
WASHINGTON — Richard H. Thaler, whose work has persuaded many economists to pay more attention to human behavior, and many governments to pay more attention to economics, was awarded the Nobel Memorial Prize in Economic Sciences on Monday.
Professor Thaler is the rare economist to win a measure of fame before winning the prize. He is an author of a best-selling book, “Nudge,” about helping people to make better decisions. He also appeared in the 2015 film “The Big Short,” delivering what is surely one of the most widely viewed tutorials in the history of economics, on the causes of the 2008 financial crisis.
The Nobel committee, announcing the award in Stockholm, said that it was honoring Professor Thaler for his pioneering work in establishing that people are predictably irrational — that they consistently behave in ways that defy economic theory. People will refuse to pay more for an umbrella during a rainstorm; they will use the savings from lower gas prices to buy premium gasoline; they will offer to buy a coffee mug for $3 and refuse to sell it for $6.
The committee credited Professor Thaler, who teaches at the University of Chicago Booth School of Business, for moving economics toward a more realistic understanding of human behavior, and for using the resulting insights to improve public policies, notably a sweeping shift toward the automatic enrollment of employees in retirement savings programs.
“In order to do good economics, you have to keep in mind that people are human,” Professor Thaler said at a news conference after the announcement.
Asked how he would spend the prize money of about $1.1 million, Professor Thaler replied, “This is quite a funny question.” He added, “I will try to spend it as irrationally as possible.”
The economics prize was established in 1968 in memory of Alfred Nobel by Sweden’s central bank and is awarded by the Royal Swedish Academy of Sciences. One of Professor Thaler’s frequent collaborators, Daniel Kahneman, was awarded the prize in 2002. Another behavioral economist, Robert J. Shiller, who was among the winners in 2013, hailed Professor Thaler on Monday as “one of the most creative spirits in modern economics.”
Mainstream economics was built on the simplifying assumption that people behave rationally. Economists understood that this was not literally true, but they argued that it was close enough.
Professor Thaler has played a central role in pushing economists away from that assumption. He did not simply argue that humans are irrational, which has always been obvious but is not particularly helpful. Rather, he showed that people depart from rationality in consistent ways, so their behavior can still be anticipated and modeled.
“Thaler more than anyone has disciplined the idea of animal spirits,” said Cass Sunstein, a Harvard law professor who wrote “Nudge” with Professor Thaler. The 2008 book argued that governments could use behavioral insights to improve the efficiency and quality of a wide range of public services. Two years later, the British government created a department to pursue the experiment. Other countries, including the United States, followed suit.
Britain’s former prime minister David Cameron described the inspiration as a “very simple, very conservative thought — go with the grain of human nature.”
Some nudges are relatively minor. The British government found that people were more likely to pay automobile registration fees if billing letters included a picture of the vehicle. Other nudges are far-reaching. Observing that inertia limited participation in beneficial programs, like retirement savings plans or school lunch programs, Professor Thaler proposed that governments and employers should make participation the default option. People are free to opt out, but inertia is on the side of the preferred outcome.
A similar proposal, “Save More Later,” offsets the tendency to place a relatively high value on current income by allowing people to commit to setting aside more money next year. Professor Thaler, 72, was born in East Orange, N.J., and graduated from Case Western Reserve University before earning a doctorate in economics at the University of Rochester in 1974. At the time, the field was gripped by an enthusiasm for the assumption that people are rational actors. An indicative and prevalent piece of economic reasoning asserted that ordinary people would adjust their spending habits whenever the government adjusted fiscal policy because they would foresee the consequences.
Professor Thaler has written that he began to have “deviant thoughts” in graduate school. He would ask people about their actual choices, an exercise that most economists regarded as irrelevant, and he found that the answers he got were different from what was in textbooks.His career was shaped by his discovery of the work of Professor Kahneman and his longtime collaborator, Amos Tversky, who were advancing the idea that economics needed to grapple with actual human behavior. Professor Thaler became their collaborator and played a central role in bringing the work into the economic mainstream.
In 1995, Professor Thaler joined the faculty at the University of Chicago, the institution most associated with a rationalist approach to economics. “I knew I was going to be in for a fight and I thought it would be good for me and good for them,” he said in an interview on Monday. “The best way to sharpen your skills is to play against the best.”
Professor Thaler’s academic work can be summarized as a long series of demonstrations that standard economic theories do not describe actual human behavior.
For example, he showed that people do not regard all money as created equal. When gas prices decline, standard economic theory predicts that people will use the savings for whatever they need most, which is probably not additional gasoline. In reality, people still spend much of the money on gas. They buy premium gas even if it is bad for their car. In other words: They treat a certain slice of their budget as gas money.
He also showed that people place a higher value on their own possessions. In a famous experiment, he and two co-authors distributed coffee mugs to half of the students in a classroom, and then opened a market in mugs. Students randomly given a mug regarded it as twice as valuable as did the students who were not given a mug.
This “endowment effect” has since been demonstrated in a wide range of situations. It helps to explain why real markets do not work as well as chalkboard models.One of Professor Thaler’s most profound findings involves the importance of fairness. He showed that people will penalize unfair behavior even if they do not benefit from doing so.
This has important economic implications. It explains, for example, why an umbrella store may choose not to raise prices during a rainstorm. It also illuminates the mechanics of unemployment. Standard economic theory predicted that during an economic downturn, employers would cut wages to a level consistent with the demand for goods or services, meaning there was no reason to think a downturn would produce unemployment.
But workers regard wage cuts as unfair. And so employers, seeking to avoid angering the workers they plan to keep, prefer to cut employees rather than wages.In a presidential address to the American Economic Association in January 2016, Professor Thaler predicted behavioral economics would succeed so well it would eventually disappear.
“I think it is time to stop thinking about behavioral economics as some kind of revolution,” he said. In time, he added, “all economics will be as behavioral as the topic requires.”


-------
University of Chicago Prof. Richard Thaler has been awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2017.
The University of Chicago Booth School of Business scholar was honored 'for his contributions to behavioural economics,' a relatively new field that bridges the gap between economics and psychology.
He is among the 89 scholars associated with #UChicago to receive Nobel Prizes, and among the 28 who have received the Nobel in economics.


Richard Thaler wins Nobel Prize 'for his contributions to behavioural economics'
Richard H. Thaler has been awarded the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2017. Thaler is the Charles…
NEWS.UCHICAGO.EDU

張貼者: 人事物 於 凌晨4:06 沒有留言:

2017年9月20日 星期三

人工智慧治療癌症?IBM Watson 挨批 ;IBM Invests $240 Million Into AI Research Lab With MIT As It Struggles ...

IBM and MIT to pursue joint research in artificial intelligence, establish ...

news.mit.edu/2017/ibm-mit-joint-research-watson-artificial-intelligence-lab-0907
Sep 7, 2017 - IBM and MIT today announced that IBM plans to make a 10-year, $240 million investment to create the MIT–IBM Watson AI Lab in partnership with MIT. The lab will carry out fundamental artificial intelligence (AI) research and seek to propel scientific breakthroughs that unlock the ...

MIT-IBM Watson AI Lab - Home

mitibmwatsonailab.mit.edu/
The MIT-IBM Watson AI Lab is focused on fundamental artificial intelligence (AI) research with the goal of propelling scientific breakthroughs that unlock the ...

IBM Invests $240 Million Into AI Research Lab With MIT As It Struggles ...

https://www.forbes.com/.../ibm-invests-240-million-for-ai-research-lab-with-mit-as-it-...
Sep 7, 2017 - Watson researchers work inside IBM's Thomas J. Watson Research Center, the headquarters of the company's research, in Yorktown Heights, ...

MIT and IBM: putting our “minds and hands” together for future of AI

https://www.ibm.com/blogs/research/2017/09/mit-ibm-ai-lab/
Sep 6, 2017 - Through the MIT-IBM Watson AI Lab, IBM and MIT will achieve fundamental scientific breakthroughs at the heart of AI today and into the future.

IBM and MIT Bet That Materials and Quantum Advances Will ...

https://plus.google.com/111288117191132115970/posts/Mt7KRrWGWBz
Hanching Chung
Sep 7, 2017 - IBM and MIT Bet That Materials and Quantum Advances Will Supercharge AI


IBM 大力宣傳華生的腫瘤診斷能力,但是實際上功效不及預期,顯示 IBM 未徹底評估運用於全球醫院的挑戰,就為了提振營收,貿然發布新產品!
人工智慧治療癌症?IBM Watson 挨批:診療效果差、資料規定嚴格又昂貴 - INSIDE 硬塞的網路趨勢觀察
INSIDE.COM.TW

張貼者: 人事物 於 清晨5:28 沒有留言:
較新的文章 較舊的文章 首頁
訂閱: 文章 (Atom)

網誌存檔

  • ►  2025 (41)
    • ►  6月 (3)
    • ►  5月 (4)
    • ►  3月 (6)
    • ►  2月 (15)
    • ►  1月 (13)
  • ►  2024 (30)
    • ►  12月 (9)
    • ►  11月 (4)
    • ►  9月 (5)
    • ►  6月 (1)
    • ►  5月 (3)
    • ►  4月 (1)
    • ►  3月 (1)
    • ►  2月 (5)
    • ►  1月 (1)
  • ►  2023 (11)
    • ►  12月 (2)
    • ►  11月 (2)
    • ►  10月 (1)
    • ►  8月 (1)
    • ►  7月 (1)
    • ►  6月 (1)
    • ►  5月 (2)
    • ►  3月 (1)
  • ►  2022 (4)
    • ►  3月 (1)
    • ►  1月 (3)
  • ►  2021 (3)
    • ►  12月 (1)
    • ►  4月 (1)
    • ►  2月 (1)
  • ►  2020 (28)
    • ►  11月 (1)
    • ►  10月 (3)
    • ►  9月 (1)
    • ►  8月 (3)
    • ►  6月 (14)
    • ►  5月 (1)
    • ►  4月 (1)
    • ►  3月 (1)
    • ►  2月 (3)
  • ►  2019 (18)
    • ►  12月 (1)
    • ►  11月 (1)
    • ►  9月 (1)
    • ►  8月 (3)
    • ►  6月 (2)
    • ►  5月 (2)
    • ►  3月 (5)
    • ►  2月 (2)
    • ►  1月 (1)
  • ►  2018 (18)
    • ►  12月 (3)
    • ►  10月 (3)
    • ►  7月 (3)
    • ►  6月 (5)
    • ►  4月 (1)
    • ►  3月 (1)
    • ►  1月 (2)
  • ▼  2017 (25)
    • ▼  12月 (2)
      • "behavioral economics"
      • Alpha Zero’s “Alien” Chess Shows the Power, and th...
    • ►  11月 (3)
      • Yann LeCun
      • 清水亮:日本AI的現狀與「Deep Learning」的課題
      • The Past, Present and Future of Artificial Intelli...
    • ►  10月 (2)
      • The Rise of Behavioral Economics and Its Influence...
      • Richard Thaler wins Nobel Prize 'for his contribut...
    • ►  9月 (5)
      • 人工智慧治療癌症?IBM Watson 挨批 ;IBM Invests $240 Million I...
    • ►  8月 (3)
    • ►  7月 (1)
    • ►  6月 (2)
    • ►  5月 (1)
    • ►  3月 (1)
    • ►  2月 (2)
    • ►  1月 (3)
  • ►  2016 (100)
    • ►  12月 (6)
    • ►  11月 (2)
    • ►  10月 (4)
    • ►  9月 (1)
    • ►  8月 (3)
    • ►  7月 (7)
    • ►  6月 (25)
    • ►  5月 (11)
    • ►  4月 (12)
    • ►  3月 (2)
    • ►  2月 (6)
    • ►  1月 (21)
  • ►  2015 (27)
    • ►  12月 (2)
    • ►  11月 (1)
    • ►  10月 (1)
    • ►  9月 (1)
    • ►  8月 (3)
    • ►  7月 (1)
    • ►  6月 (3)
    • ►  5月 (7)
    • ►  4月 (2)
    • ►  3月 (1)
    • ►  2月 (1)
    • ►  1月 (4)
  • ►  2014 (20)
    • ►  12月 (1)
    • ►  10月 (4)
    • ►  9月 (4)
    • ►  7月 (1)
    • ►  6月 (3)
    • ►  5月 (1)
    • ►  4月 (2)
    • ►  3月 (1)
    • ►  2月 (1)
    • ►  1月 (2)
  • ►  2013 (19)
    • ►  12月 (1)
    • ►  10月 (3)
    • ►  6月 (2)
    • ►  5月 (3)
    • ►  4月 (2)
    • ►  3月 (1)
    • ►  2月 (3)
    • ►  1月 (4)
  • ►  2012 (29)
    • ►  12月 (5)
    • ►  11月 (4)
    • ►  9月 (1)
    • ►  8月 (3)
    • ►  7月 (3)
    • ►  6月 (3)
    • ►  5月 (4)
    • ►  4月 (3)
    • ►  3月 (1)
    • ►  1月 (2)
  • ►  2011 (43)
    • ►  12月 (3)
    • ►  11月 (2)
    • ►  10月 (5)
    • ►  9月 (1)
    • ►  8月 (3)
    • ►  7月 (5)
    • ►  6月 (2)
    • ►  5月 (2)
    • ►  4月 (5)
    • ►  3月 (3)
    • ►  2月 (3)
    • ►  1月 (9)
  • ►  2010 (47)
    • ►  12月 (1)
    • ►  11月 (5)
    • ►  10月 (8)
    • ►  9月 (6)
    • ►  8月 (4)
    • ►  7月 (6)
    • ►  6月 (7)
    • ►  5月 (2)
    • ►  4月 (3)
    • ►  3月 (3)
    • ►  2月 (2)
  • ►  2009 (50)
    • ►  12月 (1)
    • ►  9月 (1)
    • ►  8月 (3)
    • ►  7月 (4)
    • ►  6月 (5)
    • ►  5月 (3)
    • ►  4月 (10)
    • ►  3月 (4)
    • ►  1月 (19)
  • ►  2008 (29)
    • ►  12月 (6)
    • ►  11月 (1)
    • ►  10月 (1)
    • ►  9月 (3)
    • ►  8月 (9)
    • ►  7月 (8)
    • ►  6月 (1)
  • ►  2003 (1)
    • ►  1月 (1)
  • ►  2001 (1)
    • ►  2月 (1)
  • ►  2000 (1)
    • ►  7月 (1)
  • ►  1997 (1)
    • ►  1月 (1)
  • ►  1995 (1)
    • ►  4月 (1)
  • ►  1992 (2)
    • ►  6月 (1)
    • ►  2月 (1)
  • ►  1991 (4)
    • ►  12月 (1)
    • ►  8月 (1)
    • ►  3月 (2)
  • ►  1990 (1)
    • ►  6月 (1)
  • ►  1989 (2)
    • ►  12月 (1)
    • ►  5月 (1)
  • ►  1982 (1)
    • ►  11月 (1)
  • ►  1980 (1)
    • ►  9月 (1)
  • ►  1978 (1)
    • ►  11月 (1)
簡單主題. 主題圖片來源:luoman. 技術提供:Blogger.